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Abstract. The performance of object-oriented applications in scientific
computing often suffers from the inefficient use of high-level abstrac-
tions provided by underlying libraries. Since these library abstractions
are user-defined and not part of the programming language itself there is
no compiler mechanism to respect their semantics and thus to perform
appropriate optimizations.

In this paper we outline the design of ROSE and focus on the discussion of
two approaches for specifying and processing complex source code trans-
formations. These techniques are intended to be as easy and intuitive as
possible for potential ROSE users; i.e., for designers of object-oriented
scientific libraries, people most often with no compiler expertise.

1 Introduction

The future of scientific computing depends upon the development of more sophis-
ticated application codes. The original use of Fortran represented higher-level
abstractions than the assembly instructions that preceded it, but exhibited per-
formance problems that took years to overcome. However, the abstractions rep-
resented in Fortran were standardized within the language; today’s much higher-
level object-oriented abstractions are more difficult to optimize because they are
user-defined.

The introduction of parallelism greatly exacerbates the compile-time opti-
mization problem. While serial languages serve well for parallel programming,
they know only the semantics of the serial language. As a result a serial com-
piler cannot introduce scalable parallel optimizations. Significant potential for
optimization of parallel applications is lost as a result. There is a significant op-
portunity to capitalize upon the parallel semantics of the object-oriented frame-
work and drive significant optimizations specific to both shared memory and
distributed memory applications.
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We present a preprocessor based mechanism, called ROSE, that optimizes
parallel object-oriented scientific application codes that use high-level abstrac-
tions provided by object-oriented libraries. In contrast to compile-time optimiza-
tion of basic language abstractions (loops, operators, etc.), the optimization of
the use of library abstractions within applications has received far less atten-
tion. With ROSE, library developers define customized optimizations and build
specialized preprocessors. Source-to-source transformations are then used to pro-
vide an efficient mechanism for introducing such custom optimizations into user
applications. A significant advantage of our approach is that preprocessors can
be built which are tailored to user-defined high-level abstractions, while vendor
supplied C++ compilers know only the lower-level abstractions of the C++ lan-
guage they support. So far, our research has focused on applications and libraries
written in C++.

This approach permits us to leverage existing vendor C++ compilers for
architecture specific back-end optimizations. Significant improvements in per-
formance associated with source-to-source transformations have already been
demonstrated in recent work, underscoring the need for further research in this
direction.

Statement/GridSize 5x5 25x25 100x100

w=1 3.0 1.8 1.3

w=u 3.0 1.9 1.3

w=u*2+v*3+u 13.0 5.0 2.4

indirect addressing 44.0 41.0 32.5

where statements 23.0 5.0 3.0

9pt stencil 77.0 14.0 5.6

Table 1. Speedups associated with optimizing source-to-source transformations
of abstractions within Overture applications. Results are presented for 2D array
objects u,v,w.

Table 1 shows some of these improvements for the use of optimizing source-
to-source transformations within the OVERTURE framework [3]. Speedups are
listed for several common types of statements, the values are the ratios of exe-
cution times without and with the optimizing source-to-source transformations.
In each case the optimizing transformation results in better performance. The
degree of improvement depends upon the abstraction being optimized within
the application code and the problem size. For example, in the case of indirect
addressing the performance improvement for 100×100 size problems is 3250%,
showing the rich potential for indirect addressing optimizations. We can expect
that ROSE will duplicate these results through the fully automated introduction
of such optimizing transformations into application codes.

Other work exists which is related to our own research. Internally within
ROSE a substantially modified version of the SAGE II [6] AST restructuring
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tool is used. Nestor [8] is a similar AST restructuring tool for Fortran 77, For-
tran 90, and HPF2.0, which, however, does not attempt to recognize and opti-
mize high-level user-defined abstractions. Work on MPC++ [9,10] has led to the
development of a C++ tool similar to SAGE, but with some additional capabil-
ities for optimization. However, it does not attempt to address the sophisticated
scale of abstractions that we target or the transformations we are attempting to
introduce.

Related work on telescoping languages [7] shares some of the same goals as
our research work and we look forward to tracking its progress in the coming
years. Other approaches we know of are based on the definition of library-specific
annotation languages to guide optimizing source code transformations [11] and
on the specification of both high-level languages and corresponding sets of axioms
defining code optimizations [12].

Work at University of Tennessee has lead to the development of Automati-
cally Tuned Linear Algebra Software (ATLAS) [4]. Within this approach numer-
ous transformations are written to define a search space and the performance
of a given architecture is evaluated. The parameters associated with the best
performing transformation are thus identified. Our work is related to this in the
sense that this is one possible mechanism for the identification of optimizing
transformations that could be used within preprocessors built using ROSE to
optimize application codes. Our approach to the specification of transformations
in this paper is consistent with the source code generation techniques used to
generate transformations within ATLAS.

The remainder of this paper is organized as follows. In section 2 we give a
survey on the ROSE infrastructure; we describe the process of automatically gen-
erating library-specific preprocessors and explain their source-to-source transfor-
mation mechanisms. The main focus of this paper is on the specification of these
source-to-source transformations by the developer of the library. We will thus
discuss two alternative specification approaches and an AST query mechanism
in section 3. In section 4 we finally summarize our work.

2 ROSE Overview

We have developed ROSE as a preprocessor mechanism because our focus is on
optimizing the use of user-defined high-level abstractions and not on lower-level
optimizations associated with back-end code generation for specific platforms.
Our approach permits ROSE to work as a preprocessor independent of any
specific C++ compiler.

In the following we will briefly describe the internal structure of a prepro-
cessor which has been automatically generated using ROSE; particularly the
recognition of high-level abstractions (section 2.1), the overall preprocessor de-
sign (section 2.2), and finally the specification of the transformations (section 3),
which is the main focus of this paper.
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2.1 Recognition of Abstractions

We recognize abstractions within a user’s application much the same way a com-
piler recognizes the syntax of its base language. To recognize high-level abstrac-
tions we build a hierarchy of high-level abstract grammars and the corresponding
high-level ASTs using ROSE. This hierarchy is what provides for a relationship
to telescoping languages [7].

These high-level abstract grammars are very similar to the base language
abstract grammar — in our case an abstract C++ grammar. They are modified
forms of the base language abstract grammar with added terminals and non-
terminals associated with the abstractions we want to recognize. They cannot
be modified in any way to introduce new keywords or new syntax, so clearly there
are some restrictions. However, we can still leverage the lower-level compiler in-
frastructure; the parser that builds the base language AST. New terminals and
nonterminals added to the base language abstract grammar might represent spe-
cific user-defined functions, data-structures, user-defined types, etc. More detail
about the recognition of high-level abstractions can be found in [2]

2.2 Preprocessor Design

Figure 1 shows how the individual ASTs are connected in a sequence of steps;
automatically generated translators generate higher level ASTs from lower level
ASTs. The following describes these steps:

1. The first step generates the Edison Design Group (EDG) AST. This AST
has a proprietary interface and is translated in the second step to form the
abstract C++ grammar’s AST.

2. The C++ AST restructuring tool is generated by ROSETTA [1] and is
essentially comformant with the SAGE II implementation. This second step
is representative of what SAGE II provides and presents the AST in a form
where it can be modified with a non-proprietary public interface. At this
second step the original EDG AST is deleted and afterwards is unavailable.

3. The third step is the most interesting since at this step the abstract C++
Grammar’s AST is translated into higher level ASTs. Each parent AST
(associated with a lower level abstract grammar) is translated into all of
its child ASTs so that the hierarchy of abstract grammars is represented
by a corresponding hierarchy of ASTs (one for each abstract grammar).
Transformations can be applied at any stage of this third step and modify the
parent AST recursively until the AST associated with the original abstract
C++ grammar is modified. At the end of this third step all transformations
have been applied.

4. The fourth step is to traverse the C++ AST and generate optimized C++
source code (unparsing). This completes the source-to-source preprocessing.

An obvious next and final step is to compile the resulting optimized C++
source code using a vendor’s C++ compiler.
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Unoptimized C++ Source Code
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Fig. 1. Source-to-source C++ transformation with preprocessors using the
ROSE infrastructure.

3 Specification of Transformations

This paper is primarily about the specification of transformations for use within
preprocessors built using ROSE. The purpose of any transformation is to locally
rewrite a statement or collection of statements — the target — using the seman-
tics of the high-level abstractions being optimized and the context of their use
within the application.

All transformations share a common set of requirements. Internally, the ap-
plication has been parsed to build the corresponding AST within the AST hierar-
chy, using either the abstract C++ grammar or a higher-level abstract grammar.
This forms the starting point for the internal processing. The ending point is
the AST which has been modified according to the specification of the trans-
formation. Since at this point all fragments of the AST where transformations
will be applied have been identified in the recognition phase, we can associate
transformations with specific terminals of the high-level abstract grammar. This
approach permits the transformations to be performed within a single traversal
of the AST at each node corresponding to a specific terminal of the abstract
grammar.

The definition of the interface for the specification of transformations is
straightforward. Inputs are fragments of the application’s AST representing
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C++ code to be optimized. Outputs are the new AST fragments represent-
ing the transformed code. The actual transformation phase is the substitution of
the input AST fragment with the output AST fragment within the larger AST
representing the application code.

It is the responsibility of the transformation to reproduce the semantics of
the statement or collection of statements being substituted. Ultimately, it is the
responsibility of the library developer to correctly specify the transformation
which represents the semantics of the high-level abstraction being optimized.

Our recent research has been focusing on two fundamentally different method-
ologies for specifying the transformations to be applied; a first approach based
on direct (manual) AST construction and a more sophisticated second approach
leveraging the compiler front-end to generate the required output AST frag-
ment. An orthogonal query mechanism allows either AST fragment construction
mechanism to perform queries on the input AST fragment. This query mecha-
nism permits the output AST fragment to be tailored to the context of the input
AST fragment.

3.1 Mechanism for Querying AST Fragments

Figures 2 and 3 show an example of the query specification mechanism using syn-
thesized attributes. This mechanism permits the use of inherited and synthesized
attributes and accumulators in the development of queries upon any fragment
of the AST. The mechanism is backed up by an automatically generated tree
traversal mechanism generated by ROSETTA as part of the AST restructuring
tool associated with each level of an abstract grammar in the hierarchy.

3.2 Direct Construction of AST Fragments

From the perspective of the compiler, at the start of the optimization phase
the user’s application is already parsed and represented by an AST. Any opti-
mization must modify this representation. Evidently, the simplest approach is
to modify the AST directly. Numerous specialized tools are based around tech-
niques that directly manipulate the internal forms used within compilers. The
AST and the source code are semantically equivalent in the sense that they rep-
resent the same code. However, the AST is more complex for users to manipulate
as a tree, at least partly because programmers are used to manipulating source
code as text.

Figure 5 shows an example of code required to construct a for loop within
Sage++ [6] (predecessor to Sage II and our modified version of Sage II). Debug-
ging the code generated from this AST fragment, requires a level of indirection
which makes the specification of larger transformations particularly difficult.

figure 4 shows the code generated from the specification of the AST frag-
ment in figure 5. Within this approach, and specifically in this example, there
is a dramatic difference in the amount of code required to specify the AST frag-
ment (figure 5) and the source code unparsed from the AST fragment (figure
4). Specific to this example there is a factor of 12 expansion in complexity as
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class Query : public AstBottomUpProcessing< list<SgName> > {
list<SgName> evaluateSynthesizedAttribute(SgNode*,SubtreeSynthesizedAttributes);
...

};

// This function returns a list of variable names as synthesized attribute
list<SgName>
Query::evaluateSynthesizedAttribute(SgNode* astNode,

SubTreeSynthesizedAttributes childList)
{

list<SgName> variableNameList;
SgVarRefExp* varRefExp = isSgVarRefExp(astNode);
if (varRefExp != NULL)
{

SgVariableSymbol* variableSymbol = varRefExp->get_symbol();
SgInitializedName* initializedName = variableSymbol->get_declaration();
SgName variableName = initializedName->get_name();
variableNameList.push_back (variableName);

}
return mergeLists(variableNameList, childList);

}

Fig. 2. Example of evaluateSynthesizedAttribute function used in the templated
query interface for a query of variable names in AST fragments. The Query class
inherits from AstBottomUpProcessing with list<SgName> as template param-
eter.

Query localQueryOperator; // build query operator
list<SgName> operandNameList = localQueryOperator.traverse( astNode );

Fig. 3. Example source code fragment specifying the query of variable names
using synthesized attributes.

measured in the number of lines of code. It is also immediately obvious that
the final code representation (figure 4) is easier to understand. The source code
building the AST fragment (figure 5) additionally assumes a working knowledge
of a particular AST restructuring tool (in this case Sage++).

However, conventional methods for the specification of transformations —
which we have found in the literature — are characterized by the direct con-
struction or alteration of AST fragments (e.g., declaration statement objects,
for loop statement objects, etc.). Alternative compiler tools (Nestor [8], Sage [6],
etc.) are similarly limited to such direct transformation approaches and, as a re-
sult, are most appropriate for simple transformations. These direct approaches
also assume a high degree of compiler expertise which additionally limit their
applicability within scientific computing.

3.3 Source-String Based Construction of AST Fragments

Since scientific library writers represent our target audience, we cannot assume
any compiler expertise or familiarity with ASTs. Additionally, it is our experience
that transformations for cache-based optimizations, which we are particularly
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A.redim(size);
for (i_loopxx = 0; i_loopxx < 100; i_loopxx++)
{
xxx_dA_T[i_loopxx] = xxx_dB[i_loopxx];

}

Fig. 4. Unparsed source code from the AST formed in figure 5.

interested in, are complex [13,14]. Implementing these kinds of transformations
using the approach of direct AST construction is rather tedious, if not impracti-
cal. We therefore require a more compact representation of the transformation.
Clearly, from the user’s perspective, the transformation would be best repre-
sented as source code in the application’s programming language, even if this
representation cannot immediately be substituted into the AST.

Our more sophisticated second approach is therefore based on the source code
representation of the transformations and leveraging the compiler front-end in
order to generate the equivalent AST fragment to be substituted into the appli-
cation’s AST. There are several advantages of this transformation mechanism:

– The source code represents the most compact representation of the equiva-
lent AST and is familiar to the programmer.

– The source code representing the transformation can be most easily exam-
ined for correctness by the user.

– Since the source code can be extracted from files, transformations can be
built from working versions of the code representing the transformations.
This approach thus allows test codes representing the transformations to be
built separately and introduced as optimizing transformations into applica-
tions. We expect this approach will permit an interface to optimization tools
such as ATLAS.

– The transformation source code can be parsed directly by the internal com-
piler infrastructure to generate the AST fragment required. Thus the process
of generating the AST fragment for insertion into the AST at compile-time
can be automated.

With sufficient exercise of the query mechanism the source-string can be tai-
lored (programmed) to build most source code transformations. Figure 6 shows
the source code and function call required to generate the identical AST fragment
as in figure 5.

We consider the manipulation of strings, as an alternative way to specify the
AST transformation at compile time, to be an added approach especially useful
for larger transformations. This approach is direct from the user’s point of view,
since the source-to-source transformation is specified using source code. But our
approach should be considered indirect from the compiler’s point of view, since
the AST fragment is subsequently generated from source-strings and it (the AST
fragment) is what is needed at compile-time.

The optimization of object-oriented array class libraries can form an inter-
esting example problem. The array statements elegantly represent mathematical
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SgExpression *Expression = CExpressionStatement->expr()->lhs();
SgSymbol *Argument = (Expression->lhs()->symbol() == NULL) ?

Expression->lhs()->lhs()->symbol() : Expression->lhs()->symbol();
SgExpression dimen_call(RECORD_REF);
dimen_call.setLhs(SgVarRefExp(*TemporaryArrayPtr));
SgSymbol *FieldSymbol = FindFieldWName("redim", TemporaryArrayPtr );
SgFunctionCallExp dimen_func (*FieldSymbol);
dimen_func.addArg(SgVarRefExp(*Argument));
dimen_call.setRhs(dimen_func);
SgCExpStmt RedimMemberFunction (dimen_call);
SgExpression *Expression = getRootExpression ( Statement );
SgVariableSymb *TemporaryArrayPtr = new SgVariableSymb ("xxx_dA_T");
TemporaryArrayPtr->declareTheSymbol( *( StatementPtr->controlParent() ) );
SgExpression *le = Expression->lhs();
SgDerivedType *dtp = NULL;
SgSymbol *vsb = le->symbol();
TemporaryArrayPtr->setType(vsb->type());
SgExpression *Expression = getRootExpression ( Statement );
SgVariableSymb *TemporaryArrayPtr = new SgVariableSymb ("xxx_dB");
TemporaryArrayPtr->declareTheSymbol( *( StatementPtr->controlParent() ) );
SgExpression *le = Expression->lhs();
SgDerivedType *dtp = NULL;
SgSymbol *vsb = le->symbol();
TemporaryArrayPtr->setType(vsb->type());
SgVariableSymb *LoopInductionVariable = new SgVariableSymb ("i_loopxx");
LoopInductionVariable->setType( SgTypeInt() );
LoopInductionVariable->declareTheSymbol( *( StatementPtr->controlParent() ) );
SgCExpStmt *AssignmentExpression =

new SgCExpStmt( SgAssignOp(*LhsExpression, SgVarRefExp(*TemporaryArrayPtr) ) );
SgBasicBlock* LoopBody = new SgBasicBlock ();
LoopBody.insert(AssignmentExpression);
int upperBound = 100;
SgForStmt *ForStatementPtr =

new SgForStmt( SgAssignOp(SgVarRefExp(*LoopInductionVariable),SgValueExp(0)),
SgVarRefExp(*LoopInductionVariable) < SgValueExp(upperBound),
SgUnaryExp(PLUSPLUS_OP,1,SgVarRefExp(*LoopInductionVariable)),
SgCExpStmt(*LoopBody));

Fig. 5. Code to build manually an AST fragment for the for loop shown in fig.
4

expressions because of the operator overloading made possible within the C++
language. In figure 7 we show a sample array statement from the A++/P++
array class library [15,16]. This library permits the specification of serial and
parallel array objects and their manipulation using overloaded operators. The
library permits the evaluation of expressions using pair-wise operator or expres-
sion template mechanisms. Both of these approaches have performance problems.
The pair-wise evaluation of expressions within a statement is not cache friendly
and results in a loss of performance (factor of 1-6) [16,13]. While the expression
templates have long compile times and limits on their application [13].

Figure 8 shows the semantically equivalent transformation generated from
the above A++/P++ target (figure 7). In this case the optimizing transfor-
mation removes all array class overhead and provides the same performance as
C or Fortran 77, since the data is accessed through restrict pointers. More
sophisticated transformations could provide fusion between statements to pro-
vide improved temporal locality of array statement expressions (providing larger
internal loops).
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buildAST_Fragment (
"A.redim(size); \n for (i_loopxx = 0; i_loopxx < 100; i_loopxx++) \n \
{ \n xxx_dA_T[i_loopxx] = xxx_dB[i_loopxx]; }" );

Fig. 6. Function call using a source-string to create an AST representing the
source code in figure 4.

// A and B are declared as array objects (not shown)
// and used in an array statement
A(I) = ( B(I-1) + B(I+1) ) * 0.5;

Fig. 7. Target of optimizing transformation (transformation shown in figure 8).

4 Conclusions

ROSE is a library to simplify the construction of optimizing preprocessors. The
specification of the transformation is done within the program that is compiled
to be the preprocessor. This program leverages both the ROSE library for inter-
nal infrastructure and the source code generated by ROSETTA (part of ROSE).
Source code generated by ROSETTA implements AST restructuring tools cor-
responding to abstract grammars and higher-level abstractions, this source code
is compiled to build the preprocessor. Infrastructure within ROSE permits the
specification of transformations, either directly modifying the AST or indirectly
through the specification of source-strings which are processed to form AST
fragments which are used to modify the AST.

We have presented the ROSE infrastructure to automatically generate library-
specific source-to-source compilers (preprocessors). These preprocessors can be
used to optimize the use of high-level abstractions in parallel object-oriented
applications.

We have presented two basic approaches for specifying transformations. While
our first approach of direct AST construction turned out to be tedious (especially
for complex cache-based transformations), our second approach, which leverages
the compiler front-end instead, provides an elegant and comfortable alternative.
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